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Abstract— Deep learning-based object detection (OD) has seen
substantial advancements; however, its practical deployment is
often constrained by the need for large-scale labeled datasets.
This limitation becomes even more critical in remote sensing
imagery, where objects are densely distributed and exhibit signif-
icant scale variations. To address these challenges, we introduce
dense pseudo-labels based SSOD method (RemoteDPL), a novel
semi-supervised OD (SSOD) framework that leverages dense
pseudo-labels (DPLs) and multiscale learning. RemoteDPL offers
three key contributions. First, a fusion module is designed
to dynamically integrate spatial and channel features across
scales, improving detection across varied object sizes. Second,
an instance density prediction branch is introduced to support
pseudo-label mining, enhancing detection performance in densely
populated regions. Finally, we propose a two-stage pseudo-label
filtering strategy that first selects “pending” class predictions
and then refines them using a joint confidence score based
on both classification and density information. Extensive exper-
iments on the DOTA-v1.0 and NWPU datasets confirm the
effectiveness of RemoteDPL, demonstrating its clear advantage
over existing state-of-the-art (SOTA) SSOD methods. On the
NWPU dataset, RemoteDPL outperforms the SOTA baseline
by +3.44%, +1.10%, and +1.62% under the settings of data
labeled with 30%, 40%, and 50%, respectively, highlighting its
strong capability in low-label remote sensing scenarios.

Index Terms— Multiscale feature fusion, multiscale learning,
pseudo-label mining, remote sensing image, semi-supervised OD
(SSOD).

I. INTRODUCTION

BJECT detection (OD) has emerged as a critical com-
Oponent in remote sensing applications, facilitating the
identification and analysis of objects within vast spatial
imagery [1]. However, the development of robust object detec-
tors hinges on the availability of extensive manually annotated
data, a process that is not only labor-intensive but also time-
consuming. In response to this challenge, semi-supervised
techniques have gained interest, offering a promising avenue
to alleviate the burden of manual annotation. Semi-supervised
techniques are initially applied to image classification [2]

Received 4 January 2025; revised 9 June 2025; accepted 16 June 2025. Date
of publication 19 June 2025; date of current version 27 June 2025. This work
was supported by the National Natural Science Foundation of China under
Project 62371324. (Yongjie Ma and Xinyuan Zhou contributed equally to this
work.) (Corresponding author: Shiyong Lan.)

Yongjie Ma, Xinyuan Zhou, Shiyong Lan, Zicheng Sun, and Yixin Qiao are
with the College of Computer Science, Sichuan University, Chengdu 610064,
China (e-mail: lanshiyong@scu.edu.cn).

Wenwu Wang is with the Centre for Vision, Speech and Signal Processing,
University of Surrey, GU2 7XH Guildford, U.K.

Data is available on-line at https://github.com/SYLan2019/RemoteDPL.

Digital Object Identifier 10.1109/TGRS.2025.3581206

and later extended to the general OD field. This approach,
which enables the model to generate pseudo-label boxes
without manual annotation, has greatly advanced the field
of OD. Early work in this field includes the pioneering
co-training algorithm [3], which leverages both labeled and
unlabeled data by training two classifiers on distinct data
views, using their agreement to generate annotations for the
unlabeled samples. More recently, generative models, such as
variational autoencoders (VAEs) [4] and generative adversarial
networks (GANs) [5], have been used for semi-supervised
learning (SSL). For example, VAEs have been used in [6] to
generate synthetic data points to enhance the learning process,
while GANs have been used in [7] to improve the robustness
of the classifiers by creating realistic data samples.

Despite these advancements, SSL techniques still face sub-
stantial challenges in real-world applications, especially in the
field of remote sensing. Remote sensing tasks often require
algorithms to achieve scale invariance, as objects captured in
satellite or aerial images vary significantly in size, ranging
from large buildings to small vehicles. Furthermore, the dense
distribution of objects in various scenes, such as complex
urban areas, leads to object overlapping and occlusions, fur-
ther complicating the OD and classification process. These
distinct challenges in remote sensing make it more difficult
to apply semi-supervised techniques effectively. Due to its
high resolution and broad coverage, remote sensing imagery
typically captures a wide variety of objects within a single
image, ranging from large-scale structures like buildings and
infrastructure to small entities such as vehicles and individuals.
This scale diversity, as shown in Fig. 1(a), arises from various
factors, such as the height variation of the capture platform.

In particular, a building captured by a high-altitude satellite
may appear significantly different in size compared with
the one captured by a low-flying drone. This heterogene-
ity in object scales presents unique challenges for standard
semi-supervised OD (SSOD) models, which are often trained
on datasets with relatively uniform object sizes. Anchor-based
methods, such as Faster R-CNN [8], which are widely used for
natural images, face challenges in adapting to various scales
and densities of objects commonly found in remote sens-
ing imagery. Selecting suitable anchor box sizes in advance
becomes highly challenging because of the wide variability
in object scales, as illustrated by our quantitative analysis of
the DOTA-v1.0 dataset in Fig. 2(a), where the large scatter
in object areas highlights the significant variation in scale.
Moreover, anchor boxes of fixed-aspect ratio and scale are
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(d)

Fig. 1. (a) In remote sensing datasets, it is common for a single image
to exhibit significant variations in instance scale. (b) Densely packed object
distributions. Both challenges negatively affect detection performance; yet,
current SSOD methods have not been specifically optimized to address them.
(c) and (d) Limitations of single-threshold pseudo-label filtering. For instance,
when the threshold is set to 0.3, valuable pseudo-labels within the yellow
ellipsoids are discarded. This demonstrates the need for a more fine-grained
pseudo-label filtering strategy to enhance the detection accuracy.
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Fig. 2. Analysis of the DOTA-v1.0 dataset. (a) Scatter plot of object areas,
highlighting the significant variation in object sizes, which pose challenges for
scale-invariant detection. (b) Compares the number of overlapping object pairs
at different IoU thresholds, revealing a significant reduction in overlap as the
threshold increases, especially for small objects. These analyses underscore
the complexity of object scale variations and spatial distribution within the
dataset, thus demanding for robust detection models.
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ill-suited for the varied and unpredictable object orientations
in aerial and satellite imagery, often resulting in missed
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detections or imprecise bounding boxes. These unique char-
acteristics necessitate the development of specialized SSOD
methods capable of effectively handling extreme scale vari-
ations and ensuring robust performance in remote sensing
applications.

Furthermore, dense instances present another formidable
challenge in remote sensing applications. In scenarios with
dense object distributions, as shown in Fig. 1(b), conventional
postprocessing thresholds become less effective, leading to
increased false positive rates [9]. One of the core challenges is
the difficulty in distinguishing between closely spaced objects.
Traditional nonmaximum suppression (NMS) algorithms [10],
which are used to eliminate redundant bounding boxes, rely
heavily on intersection over union (IoU) thresholds. When
objects are densely packed, these IoU thresholds become less
reliable. A high-IoU threshold can result in the retention
of multiple boxes that overlap, leading to a spike in false
positives. Conversely, with a low-IoU threshold, legitimate
detections may be discarded, especially in cases where objects
are partially occluded.

This challenge is further intensified by the inherent noise
and the wide variation in object sizes within remote sensing
imagery. As mentioned above, these images often feature
objects of diverse scales and orientations. For example,
in urban areas, buildings and vehicles may appear closely
clustered, and elements like shadows or reflections can intro-
duce false positives if not properly addressed. Consequently,
traditional NMS techniques are often insufficient, highlighting
the need for more advanced approaches to effectively manage
dense and heterogeneous object distributions. As shown in
Fig. 2(b), we analyze the overlapping boxes of DOTA-v1.0 at
different IoU thresholds and find that the number of overlap-
ping boxes decreases rapidly as the IoU threshold increases.
This highlights how IoU threshold selection greatly impacts
model performance in complex scenes, affecting the balance
between accuracy and recall. It also underscores the added
complexity in generating reliable pseudo-labels for SSOD.

To address these challenges, we introduce dense pseudo-
labels (DPLs)-based SSOD method for remote sensing
(RemoteDPL). Unlike previous semi-supervised approaches
which often focused on natural scenes, dense pseudo-labels
based SSOD method (RemoteDPL) aims at the scale diversity
and dense object distributions that are typical in remote
sensing imagery. RemoteDPL introduces a novel instance
density estimation branch to examine feature maps across
multiple scales and assess object density, thereby addressing
the challenges posed by densely packed regions. Conven-
tional thresholds often fail in such scenarios, leading to
high-false positive rates [2], [10], whereas the density-driven
approach of RemoteDPL selectively refines pseudo-labels in
these challenging areas, ensuring more reliable supervision.
Furthermore, we introduce an improvement in the integration
of the hybrid-scale fusion branch, enhancing its ability to
combine information from different scales effectively. By par-
titioning the feature maps into three distinct scales: original
scale, downsampled scale, and hybrid scale, RemoteDPL goes
beyond simple channel-level fusion [11], [12] by introducing
a hybrid-scale fusion branch that explicitly integrates spatial
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and channel information across different scales. This design
enhances the ability of the model to handle large-scale varia-
tions typical in remote sensing imagery, leading to improved
detection performance.

In addition, single-step thresholding is inadequate for com-
plex scenes with high noise and dense, multiscale objects.
To address this, RemoteDPL introduces a two-stage filtering
strategy based on instance density estimation and hybrid-scale
fusion. First, candidate pseudo-labels are filtered by confidence
scores, separating high-confidence boxes from uncertain ones.
The remaining labels are then refined using enhanced density
and category scores from both hybrid- and original-scale
features. This process reduces false positives and improves
pseudo-label quality, boosting detection accuracy and robust-
ness in dense remote sensing scenes. In summary, our main
contributions are as follows.

1) We propose a two-stage filtering strategy that refines
pseudo-labels using classification scores and object den-
sity cues. First, low-confidence boxes are adaptively
filtered out. Then, the remaining candidates are eval-
uated using classification scores combined with object
density estimates from hybrid-scale features.

2) An innovative density estimation branch is introduced
to quantify the density score of objects within each
region by analyzing hybrid-scale feature maps. Then, the
density estimation branch is fused with the classification
branch to improve the quality of pseudo-labels.

3) A novel fusion module is proposed to obtain the
hybrid-scale feature representation, aggregating spatial
and channel information from both the original and
downsampled scale feature maps.

4) Extensive experiments conducted on DOTA-v1.0 and
NWPU VHR-10 under various annotation ratios vali-
date the superior performance of RemoteDPL compared
with existing methods, and ablation studies confirm the
effectiveness of its multiscale joint training, density
estimation, and staged mining components.

This article serves as a comprehensive extension for its
conference version [13]. Specifically, we provide a broader
theoretical context in Sections I and II; we provide a more
detailed and insightful analysis for density estimation, fea-
ture fusion, and two-stage filtering strategy; we thoroughly
compare the experiments on more datasets to demonstrate the
improved performance of the proposed model.

II. RELATED WORKS
A. Object Detection

OD is a foundational task in computer vision, critical
for various applications. Existing detectors can be roughly
categorized into anchor-based and anchor-free approaches.
Anchor-based methods, such as YOLO [14], [15] and R-
CNN series [8], [16], rely on predefined anchor boxes to
guide detection. In contrast, anchor-free methods [17], [18],
[19], [20], exemplified by FCOS [20], eliminate anchor-related
hyperparameters, offering greater flexibility and robustness,
particularly in scenarios with large-scale variations. Given the
extreme scale diversity in remote sensing images, this article
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adopts the anchor-free FCOS [20] for SSL. By leveraging
dense prediction grids and avoiding rigid anchor definitions,
FCOS provides superior adaptability, making it well-suited
for handling the significant scale variations of remote sensing
imagery.

B. Semi-Supervised OD

SSL initially gained interest in the realm of image classi-
fication via leveraging unlabeled data to enhance the model
performance [2]. Building upon their success in image clas-
sification, SSL-based OD methods have been proposed. For
example, STAC [21] utilizes pseudo-labels generated from
partially labeled data, combined with strong data augmen-
tation. Unbiased Teacher [22] addresses the class imbalance
issue via teacher—student mutual learning. ISMT [23] sta-
bilizes pseudo-labels through NMS [24], whereas Instant-
Teaching [25] uses Mixup and Mosaic for data augmentation.
Humble Teacher [26] reduces noise with soft labels, while
Dense Teacher (DenT) [27] refines localization through
pixel-level pseudo-labels. DSL [28] introduces the adaptive
filtering to promote scale invariance. MixTeacher [12] tackles
scale variation with a mixed-scale teacher, and ARSL [29]
employs IoU prediction to mitigate label selection ambiguity.
VC [30], meanwhile, improves pseudo-label distribution align-
ment through virtual category mining. Despite these advances,
most existing methods [25], [26], [27], [28], [29], [30] are
devised for general image domains and overlook challenges
specific to remote sensing, such as extreme multiscale varia-
tions and dense object distributions with frequent overlaps.

Recent studies have explored different structures to address
scale variations. For example, the single-branch paradigm [as
shown in Fig. 3(a)] relies on feature pyramids [21], [22], [23],
[25], [26], [27], [29], [30], while the dual-branch paradigm [as
shown in Fig. 3(b)] [28], [31], [32], [33] enforces consistency
across multiple scales of the original input image. More
recently, the triple-branch paradigm [as shown in Fig. 3(c)],
first introduced in MixTeacher [12], combines features of
the normal scale and downsampled scale to create a mixed
scale representation. However, MixTeacher [12] emphasizes
channel-level integration for natural images. In contrast, our
RemoteDPL enhances the triple-branch framework by inte-
grating spatial correlations and density estimation, tailored
for remote sensing. This improves scalability and adaptability
to extreme scale variation and dense object distributions,
effectively addressing key limitations of prior semi-supervised
methods.

C. SSOD in Remote Sensing

SSL has advanced remote sensing OD by leveraging both
labeled and unlabeled data. Recent methods address key chal-
lenges, such as dense object layouts, large-scale variations,
and high-annotation costs. For example, Chen et al. [34]
utilized GANs [5] to generate additional training samples
from unlabeled data, effectively improving detection accuracy
through the data augmentation. However, the performance
of such methods is highly dependent on the quality of the
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Three architectural paradigms in SSOD are compared. (a) Single-branch paradigm, prevalent in mainstream semi-supervised detection models,

primarily relies on feature pyramids to ensure scale invariance. (b) Dual-branch paradigm focuses on consistency predictions across images of different scales
to achieve scale invariance. (c) Triple-branch paradigm employs a fusion module to integrate features from normal-scale and downsampled scales, creating

mixed-scale features.

generated samples, which can vary significantly in com-
plex remote sensing scenarios. Zhang et al. [35] combined
active learning with SSL, using a teacher—student network
and a region of interest comparison module (RoICM) to
generate high-confidence pseudo-labels and select diverse
samples for annotation, ensuring efficient use of labeled data.
Despite its contributions, this approach emphasizes sample
selection and pseudo-label generation but provides limited
support for addressing the extreme scale variations inherent
in remote sensing images. Wang et al. [36] proposed a
weakly semi-supervised approach that integrates point-level
annotations with bounding box labels, achieving competitive
performance while reducing annotation costs. However, this
method relies on precise point-level annotations as a prereq-
uisite, which can limit its applicability in large-scale remote
sensing datasets.

Other studies have focused on the detection of oriented
(rotated) bounding boxes in remote sensing. For instance,
Fu et al. [37] introduced a semi-supervised framework that
combines multiview feature learning with rotational invari-
ance constraints to improve the detection of arbitrarily
oriented objects. Meanwhile, Fu et al. [38] utilized an adap-
tive teacher—student strategy to iteratively refine pseudo-labels
with rotated box annotations, continuously enhancing detector
robustness. Although effective for handling diverse orienta-
tions, these methods struggle with extreme scale variation and
dense object distributions, and often require more complex
architectures and annotation efforts.

While existing methods provide valuable insights, most
address isolated challenges or use limited supervision, reduc-
ing their effectiveness in remote sensing. Given the extreme
scale variation and dense object distribution, we propose
a unified framework combining domain-specific adaptations
with advanced SSL to better meet remote sensing needs.

III. PROPOSED METHOD

This section presents details of the proposed method,
as illustrated in Fig. 4, with the FCOS [20] framework used
as the baseline. FCOS, an anchor-free method, outperforms
anchor-based approaches such as Faster R-CNN [8] in han-
dling the scale variations common in remote sensing imagery,
as it avoids reliance on predefined anchor sizes. Further-
more, we incorporate a pseudo-label-guided teacher—student

framework to enhance detection and more effectively leverage
unlabeled data. After each iteration, the teacher network is
updated from the student network via exponential moving
average (EMA) [39], ensuring more stable and reliable pseudo-
label generation.

To address scale variations, we propose a multiscale fusion
module that enhances scale invariance by integrating features
across scales. Furthermore, we design a density estimation
branch to predict instance density, which, combined with
classification scores, forms a joint confidence score to assess
pseudo-label reliability. A staged mining strategy further
recovers missing pseudo-labels in dense regions, thus boosting
detection performance. The detailed process is described in
Algorithm 1. In Section III, we provide an in-depth discussion
of the proposed RemoteDPL.

A. Multiscale Joint Training

Recent work [12] demonstrates that using downsampled
views and enforcing consistency with regular inputs can
enhance SSOD. For instance, MixTeacher [12] employs
squeeze-and-excitation (SE) [11] [see Fig. 5(a)], improving
multiscale detection. However, SE focuses on channelwise
dependencies while neglecting spatial context, which may
impact localization accuracy. To overcome this, we fuse both
spatial and channel features from regular and downsampled
views, improving robustness in multiscale training.

Drawing on the attention mechanisms of CBAM [40] and
CA [41], we explore two distinct fusion strategies, as shown
in Fig. 5(b) and (c), in a manner inspired by MixTeacher [12].
Different from CBAM and CA which refine the features
through attention mechanisms, our proposed fusion module
first combines the feature of the current layer P; with that
of the previous layer P;_; (with different spatial resolutions),
to obtain the features of multiple scales P,. We then further
enhance P, through the CBAM-like or CA-like module to
obtain the multiscale feature P,y. Both fusion strategies are
designed to enhance the mixed-scale feature pyramid and
improve the model’s ability to recognize objects at different
scales. Specifically, the channel attention in the CBAM-like
module adaptively adjusts the weights of concatenated multi-
scale features. A convolution then reduces these from 2C to
C channels, further enhance the feature fusion. Similarly, the
CA-like module performs multiscale fusion but incorporates
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Fig. 4. Pipeline of our proposed method. During the training phase, we introduce an additional branch to predict instance density, forming a joint confidence
score with the classification score for deep-level exploration of pseudo-labels. We employ multiscale learning by dividing the feature maps into the original
scale, downsampled scale, and hybrid scale, which integrates spatial and channel information from the first two scales. After jointly training these three types

of features, we update the teacher model using the student model with EMA.

positional awareness into channel attention, boosting spatial
context aggregation. The CA-like fusion method [see Fig. 5(c)]
is the default choice for fusion in our proposed model.

Our process involves downsampling the input image by a
factor of 0 and feeding it into the network to acquire downsam-
pled feature maps, denoted by P~ = {P, , ..., P }, capturing
coarse-grained information. These features are then fused with
the original-scale feature maps P+ = {P;", ..., P}, using
a module illustrated in Fig. 5(c), to obtain the hybrid-scale
feature maps P> = {P,", ..., P} as follows:

P =f(P. P_,) (D
where the subscript i indexes the layer of the feature map
output from the FPN network [42] and f represents the fusion
operation, as illustrated in Fig. 5(c). This fusion process
integrates channel and spatial feature maps of different scales,
thereby enhancing the model’s capability to recognize objects
of different scales.

These hybrid-scale feature maps serve as the basis for
the hybrid-scale branch during the training of the student
model. Leveraging the rich information encapsulated within
the hybrid-scale feature maps, we adopt a filtering approach
during the pseudo-label generation phase. Specifically, we pri-
oritize pseudo-labels based on the improvement in predictions
made by the hybrid-scale branch compared with the original
scale branch for the same predicted bounding box. This
selective filtering ensures that only high-quality pseudo-labels
are retained, thereby enhancing the overall robustness of
the model.

In our training framework, we jointly train the original-
scale, downsampled-scale, and hybrid-scale branches. This
multiscale approach is designed to strengthen the model’s
ability to handle objects of varying sizes. The overall loss
function governing the training process is defined as follows:

L= Lsup + >\Eunsup 2)

where L, denotes the supervised loss computed on labeled
images and Ly, signifies the unsupervised loss calculated
on unlabeled images. The parameter A is used to balance the
contributions of the supervised and unsupervised losses.

According to the usual settings in SSOD methods [25], [26],
[27], [28], [29], [30], we also set A to 2. Both the supervised
loss Lg,p and the unsupervised loss Lyysp are defined in (3).
As in MixTeacher [12], we compute the total loss by summing
the loss contributions from all scales

Lo= L™ + Lioor + Licania

t,cls t,centerness
+ BL denany 1 € {sup.unsup} 3)
where L.s and Lcenemess are the original FCOS focal loss
and cross-entropy loss, respectively. The term Lypox utilizes
the complete IoU (CIoU) loss to measure the precision of
the predictions of the boundary box. In addition, Lgensity
employs the binary cross-entropy (BCE) loss for instance
density estimation. The parameter § denotes the weighting
factor applied to the density loss, balancing its contribution
within the overall loss function.

In more detail, L is responsible for the classification task,
using the focal loss to address the class imbalance by focusing
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(a) Fusion method in MixTeacher [12] serves as a baseline. (b) CBAM-like fusion module and (c) CA-like fusion module. (b) and (c) Adopted in

our model can dynamically blend information from spatial and channel dimensions to accurately represent the hybrid-scale features, while baseline (a) used

in MixTeacher only considers channel information.

Algorithm 1 Pseudocode of RemoteDPL

Framework: Teacher Model,Student Model,Fusion Module
Loss function: Classification Loss(L),
Regression Loss(Lppey ),
Centerness LoSS(Lcenrerness)s
Density Loss(Lgensity)
Input:
Labeled Dataset D; = {(X/, V)X,
Unlabeled Dataset D, = {X|™",
Maximum Epoch K
Augmentation strategies (Weak Aug, Strong Aug)
Initial Pseudo-Label Generation Stage:
6: Initialize: Base detector with pre-trained weights
7: Train the base detector using labeled data D,
8: Use the trained detector to generate initial pseudo-labels
for unlabeled data ),
9: Output 1: Unlabeled Dataset D,o = {X,,, Vuo}
RemoteDPL Training Stage:
10: Initialize: Teacher Model(T) with pre-trained weights,
Student Model(S) with pre-trained weights
1: foralli=1,...,% do
12: for each batch of (D;y, D,o) do
13: Weak augmentation is used for labeled data
14: Strong augmentation for unlabeled data
15: Update the student model S parameters according
to Eq. (2)
16: Update the teacher model T parameters using
EMA: 6] = a6/ ™" + (1 — )6}
17: end for
18: end for
19: for all i = £ +1,.... K do
for each batch of (D;;, D,;) do
21: Weak augmentation is used for labeled data
Strong augmentation for unlabeled data
Update the student model S parameters according
to Eq. (2)
Update the teacher model T parameters using
EMA: 6] = a6/ + (1 — )6}
Use the teacher model T to generate new pseudo-
labels V,;
end for
end for
Output 2:Final trained Student Model (S)

A A

24:

25:

26:

27:
28:

more on hard-to-classify examples. Lcenteress €nhances the
model’s ability to predict the likelihood that a pixel is within
a range around the center of an object, thus refining the
localization accuracy. The CIoU loss Lpnox not only considers
the overlap between predicted and ground-truth bounding
boxes but also takes into account the distance between their
central points and the aspect ratio, providing a more holistic
measure of bounding box quality. For Lgensity, the BCE loss
is utilized to improve the prediction of instance density maps,
which helps to identify dense regions within the image. The
parameter S is crucial as it adjusts the impact of the density
estimation task relative to other loss components, ensuring that
the model maintains balance across all tasks.

By integrating these loss components, the overall loss
function ensures that the model not only performs well in
classification and localization but also effectively handles the
complexity in object density and scale variations, thereby
enhancing its robustness and accuracy in complex remote
sensing scenarios.

B. Estimation of Object Distribution Density

In remote sensing, targets are often small and densely
distributed, leading to a significant amount of overlapping
instances, as illustrated in Fig. 1(b). Regions of high-instance
density can increase the likelihood of detection errors, which
adversely affect the quality of the generated pseudo-labels.
Therefore, it is crucial for the model to dynamically adjust
its optimization decisions during the postprocessing stage
based on the instance density. This adaptability is essential to
enhance the model’s performance and applicability in complex
and densely populated environments.

To address this challenge, we introduced a dedicated branch
within the FCOS framework [20] to predict the instance
density in the region of the sampled points, as shown in
Fig. 6(a). Specifically, similar to the existing classification
and regression branches in the FCOS head, we incorporated
four additional convolutional layers following the FPN net-
work [42] to form the density prediction branch. This branch
is designed to estimate the density of instances within a given
region, allowing the model to understand and adapt to varying
densities. Using the detailed spatial and contextual information
provided by the FPN layers [42], it enables the model to make
more informed decisions based on the density of objects in the
scene.
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Fig. 6. (a) Density estimation branch is added to the original FCOS
architecture to predict the density of sample points. (b) When a positive
sample point is located between the two ground-truth boxes, the count of
the ground-truth boxes represented by this positive sample point is 2. There
are many positive sample points like this in an image. We take the maximum
value of the ground-truth box count for these points as nmax, and the density
score for this point is (2/nmax)-

During the label assignment process, when determining
whether the position (x, y) in the feature map corresponds to a
positive sample point, we define the density as the count of this
point within the corresponding ground-truth box, normalized at
the image level, as depicted in Fig. 6(b). The density regression
target is formulated as follows:

dyy = —2 @

maxn;,
ij

where i and j denote the coordinates of the sample point on
the feature map. The density value dy |, which is normalized
to the range [0, 1], represents the concentration of instances
within the region corresponding to that sample point. A higher
density value, i.e., closer to 1, signifies a greater abundance
of instances in the vicinity. To train the density branch,
we employ the BCE loss, which effectively captures the
disparity between predicted and ground-truth density, guiding
the model toward accurate density estimation.

During pseudo-label generation, our method incorporates
density branch predictions to refine candidate boxes. For
boxes with confidence scores below the positive threshold,
we apply an additional density-based filter to identify high-
quality pseudo-labels. This helps to prioritize boxes in dense
regions, enhancing overall detection accuracy and pseudo-label
reliability.

C. Two-Stage Filtering Strategy

In SSOD, improving the pseudo-label quality is crucial.
To address this, we propose a strategy that leverages the first
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two modules for effective pseudo-label mining. During the
pseudo-label generation, we compare confidence and density
scores from hybrid- and original-scale branches to evaluate and
refine potential pseudo-labels based on score improvements.
By utilizing insights from both the hybrid-scale and original-
scale branches, our strategy identifies pseudo-labels with
significant improvements in confidence and density scores.
This evaluation helps to ensure the selection of high-quality
pseudo-labels, ultimately enhancing the accuracy and effec-
tiveness of the SSOD framework.

1) Mapping and Boost Scores Calculation: During the
pseudo-label generation phase, following postprocessing steps
like NMS [24], we undertake a crucial step to enhance the
quality of pseudo-labels. Specifically, for each feature point
selected from the original-scale feature map, we match it to
the same region on the hybrid-scale feature map. By mapping
coordinates between the feature maps, we establish a direct
comparison between predictions made at different scales.
This mapping procedure enables us to calculate the score
improvement of predicted boxes derived from the hybrid-scale
branch relative to those generated by the original-scale branch.

To this end, we introduce a joint confidence score s to
integrate the classification score p and the density score d
as follows:

5= \/2(ap2 + (1 — w)d?) )

where « is a hyperparameter, representing the combination
ratio of p and d. Consequently, s is used to guide the selection
of high-quality pseudo-labels, ensuring that only the most
reliable predictions are retained for subsequent training stages.
The final score improvement is formulated as follows:

As,, = max (0,5 — ") 6)
where r; signifies the predicted boxes retained from the
original-scale branch following postprocessing operations, x
denotes the hybrid-scale branch, and + indicates the original-
scale branch. These improvement values serve as indicators
for subsequent high-quality pseudo-label mining.

2) Adaptive Filtering and Boost Scores Filtering: We intro-
duce a multistage filtering strategy, inspired by previous
SSOD methods, such as dense learning (DSL) [28] and
ambiguity-resistant SSL. (ARSL) [29]. Initially, hierarchical
filtering based on the confidence scores py , of pseudo-labels
is conducted, where py , is the classification score for point
(x, ¥) in the original-scale branch. We utilize two thresholds,
o1 and oy, for the initial filtering of pseudo-labels

pseudo label, p., > o2
I,y = ¢ pending, 01 < Pry <0 7
abandoned, Dx,y < OJ.

In our experimental setup, we referred to the category-
adaptive filtering strategy of DSL [28] to set o; and o5.
Specifically, o is fixed at 0.1, while o, follows an adaptive
mechanism to be dynamically adjusted for each cate-
gory based on the characteristics of a specific category.
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The category-adaptive threshold is calculated as follows:

]l[* ==kl! K
Ué{: (Zx,y {x,y }xy) T

N, pos

®)

where 7 | represents the predicted category of the bounding
box and k denotes the kth class in the total dataset cate-
gories C. Here, we set n = 0.7 and T = 0.35. Following
the initial filtering stage, we proceed with a second filtering
step based on the confidence boost values of the “pending”
bounding boxes identified in the first filtering step. If the boost
value As,, of the r;th bounding box, as shown in (6), exceeds
a threshold o3, we relabel/change this box as pseudo-label,
where o3 is a hyperparameter.

Remarks: We begin by applying a classification confidence
threshold o to filter out low-confidence boxes, effectively
removing most noisy pseudo-labels. The remaining “pending”
boxes, those with scores between o; and a higher threshold o7,
are further assessed using a “boost value” that integrates both
density and classification scores. Although these boxes may
have modest classification scores, a high-boost value indicates
richer feature representation from the hybrid-scale branch,
often revealing instances underestimated at the original scale.
As a result, boxes with strong density signals or notable
improvements from multiscale features are retained as valuable
pseudo-labels.

IV. EXPERIMENTS
A. Dataset and Metric

We conducted experiments on the DOTA-v1.0 [43] and
NWPU VHR-10 [44] datasets, respectively.

1) DOTA-v1.0 Dataset: The DOTA-v1.0 dataset consists
of 2806 images across 15 common -categories, totaling
188282 labeled instances. To create a comprehensive anno-
tated dataset, we merge the training and validation sets of
DOTA-v1.0. From this merged dataset, 80% is allocated for
training and the remaining 20% for validation. The original
test set of DOTA-v1.0 is then used as the unlabeled dataset.
For labeled data, we sample from the combined training set
at proportions of 1%, 5%, and 10% relative to the size of the
unlabeled dataset. Due to the high resolution of DOTA images,
we apply a cropping procedure. Each image is divided into
patches of 1000 x 1000 pixels with a stride of 450 pixels. The
annotations for the cropped patches are adjusted accordingly
by removing entries with empty targets, targets outside image
bounds, targets marked as difficult (difficulty value of 1), and
targets that are too small to be reliably detected.

2) NWPU VHR-10 Dataset: NWPU VHR-10 [44] is a
geospatial remote sensing dataset for aerial OD, featuring ten
object categories. It consists of 650 annotated images, each
containing at least one instance, with a total of 3651 target
instances, and 150 background images without any targets.
We divide the 650 annotated images into training (total anno-
tated data), validation, and testing (unlabeled) sets, following
a 3:2:5 ratio. This division aims to ensure that unlabeled data
constitutes the majority, enabling us to sample labeled data
from the total annotated set based on specific proportions
relative to the unlabeled data. For our experiments, we extract
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the labeled data with proportions of 30%, 40%, and 50% of
the unlabeled dataset.

In all experiments, we evaluated the performance of the
model using mean average precision (mAP) on the overall
validation set. This mAP metric, as defined in pascal visual
object classes (Pascal VOC) challenge [45], has been used as
a universal metric for evaluating OD accuracy.

B. Experimental Settings

Our model is built on the anchor-free FCOS detector [20],
utilizing ResNet-50 as the backbone, FPN [42] as the neck,
and dense heads for detection. During training, we apply
weak augmentation to the labeled data and strong augmen-
tation to the unlabeled data, while pseudo-label generation for
unlabeled data uses weak augmentation. For weak augmenta-
tion, we employ random flipping, while strong augmentation,
includes random flip, color jittering, cutout, and patch shuffle.
The model is trained on two RTX 3090 GPUs for a total
of 28 epochs. We use the stochastic gradient descent (SGD)
optimizer with an initial learning rate of 0.0015, which is
reduced by a factor of 10 at the 20th and 26th epochs.
The momentum and weight decay are set to 0.9 and 0.0001,
respectively.

We set the unsupervised loss rate A to 2, following the
general setting of existing SSOD frameworks [20], [25], [26],
[27], [28], [29]. In addition, we fix the density score loss
weight B at 0.1. For staged filtering, thresholds are set as
follows: o1 = 0.1, 03 = 0.65, and o3, is defined in (8). On each
GPU, we randomly sample two images from the labeled and
unlabeled datasets in a 1:1 ratio. Consistent with prior SSOD
studies [27], [28], we employ a “burn-in” strategy to initialize
the teacher model.

C. Main Results

In this section, we compare our method with other state-
of-the-art (SOTA) SSOD approaches in the general domain,
including the methods from [22], [27], [28], and [29]. We per-
form evaluations for these methods using the DOTA-v1.0 and
NWPU VHR-10 datasets. To ensure a fair comparison,
we used a consistent number of training epochs for each
method. In addition, we perform the same mAP evaluation
across all methods, where mAP is computed by averaging
the precision—recall curve area for each object class (with
an IoU threshold of 0.5 for a detection to be considered
correct). Furthermore, for fair comparison, we utilized mAP
as a performance metric for all compared methods. Note
that the SSOD algorithms in the remote sensing field as
discussed in the related work Section II, to the best of the
authors’ knowledge, do not have publicly available open-
source implementations. Furthermore, there is a lack of a
unified standard for the dataset construction for SSOD in the
remote sensing field. For these reasons, we only compared
with the SOTA methods in the general domain, similar to most
existing work for remote sensing detection.

1) DOTA-v1.0 Dataset: We first evaluate our method on
the DOTA-v1.0 dataset under different ratios of labeled data,
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TABLE I
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EXPERIMENTAL RESULTS ON DOTA-V1.0 UNDER THE PARTIALLY/FULLY LABELED DATA SETTING. EXPERIMENTS ARE CONDUCTED
ON 1%, 5%, 10%, AND 100% LABELED DATA. (-) DENOTES THE IMPROVEMENT COMPARED WITH THE BEST RESULT IN BASELINES

MODEL CATEGORY | METHODS | VENUE | 1% 5% 10% 100%
FASTER R-CNN [8] NEURIPS 2016 48.25 71.03 80.40 -
SUPERVISED ‘ FCOS [20] ‘ ICCV 2019 ‘ 47.93 69.31 79.57 -

UBT [22] ICLR 2021 52.40 73.64 81.52 83.17

DENT [27] ECCV 2022 55.81 74.58 82.43 84.32

SEMI-SUPERVISED DSL [28] CVPR 2022 54.27 73.21 79.31 81.62

ARSL [29] CVPR 2023 54.73 74.74 82.88 84.55

VC [30] T-PAMI 2024 54.50 72.50 80.81 82.60

REMOTEDPL - 58.60 76.13 83.05 84.70

(+A) - (+5.00%) (+1.86%) (+0.21%) (+0.18%)

THE - DENOTES NO RESULTS RELEASED.
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Fig. 7. Visual samples from DOTA-v1.0 at 10% protocol results, presented from left to right as ground truth, the supervised baseline (FCOS) [20], ARSL [29],
and our method RemoteDPL. Under the same test settings, RemoteDPL exhibits comprehensive object recognition across various scales in remote sensing
datasets and achieves more precise identification in dense scenarios, underscoring its effectiveness. The red dashed and red solid circles represent false negative
and false positive, respectively. From the results, it can be seen that our proposed method has significantly fewer error detections compared with the baselines.

and the results are presented in Table 1. Specifically, on the val-
idation set, our approach attains mAP scores of 58.60, 76.13,
83.05, and 84.70 for settings with 1%, 5%, 10%, and 100%
labeled data, respectively. This represents an improvement
over our supervised baseline (i.e., FCOS [20]) by +10.67,
+6.82, and +3.48 and-(no results released for FCOS with
100% labeled data) mAP in each respective setting. In addi-
tion, our method outperforms ARSL [29], a competitive dense

detection method, by +3.87, 4+1.39, +0.17, and +0.15 in
mAP across these proportions of labeled data.

Fig. 7 presents the qualitative results of our method com-
pared with our supervised baseline [20] and ARSL [29],
all trained with 10% labeled data. Leveraging the three
proposed modules, our model effectively uncovers potential
pseudo-labeled boxes, significantly enhancing the detection
quality.
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TABLE I

EXPERIMENTAL RESULTS ON NWPU VHR-10 UNDER THE PARTIALLY/FULLY LABELED DATA SETTING. EXPERIMENTS ARE CONDUCTED ON 30%,
40%, 50%, AND 100% LABELED DATA SETTINGS. (~) DENOTES THE IMPROVEMENT COMPARED WITH THE OPTIMAL BASELINE

MODEL CATEGORY | METHODS VENUE | 30% 40% 50% 100%
FASTER R-CNN [8] NEURIPS 2016 8.70 73.42 76.62 -
SUPERVISED ‘ FCOS [20] ‘ ICCV 2019 ‘ 65.15 70.16 74.27 -
UBT [22] ICLR 2021 70.21 80.78 83.60 86.90
DENT [ 77] ECCV 2022 72.48 82.04 85.37 87.20
SEMI-SUPERVISED DSL [ CVPR 2022 71.07 80.55 82.16 84.20
ARSL [’9] CVPR 2023 73.22 82.37 8591 87.62
VC [30] T-PAMI 2024 72.66 77.02 82.40 86.22
REMOTEDPL - 75.74 83.28 87.30 88.19
(+A) - (+3.44%) (+1.10%) (+1.62%) (+0.65%)
THE - DENOTES NO RESULTS RELEASED.
TABLE III TABLE IV
EFFECTIVENESS OF MULTISCALE JOINT TRAINING, DENSITY COMPARISON OF THREE FUSION METHODS
ESTIMATION, AND THE OVERALL MODEL. SETTING I Modul AP
Is A VDPLF odule
Setting Multi- Density Staged mAP VDPLF (Wlthout Fus.lon) . 8231
. N .2 Channel-based Fusion [12] (with Fig. 5 (a)) 82.73
Scale Joint ~ Estimation Mining . . .
Training Our proposed Fusion 1 (with Fig. 5 (b)) 82.84
Our proposed Fusion 2 (with Fig. 5 (c)) 82.91
1 - - - 82.31
1T v - - 82.91
1 - v - 82.34
v v v - 82.95
\Y v v v 83.05

2) NWPU VHR-10 Dataset: We also evaluate our method
on the NWPU VHR-10 dataset under different ratios of
labeled data. The results are presented in Table II. On the
validation set, our method achieved mAP scores of 75.74,
83.28, and 87.30 with 30%, 40%, 50%, and 100% labeled
data, respectively. These results surpass the supervised base-
line (i.e., FCOS) by +10.59, +13.12, 13.03, and-(no results
released for FCOS with 100% labeled data) mAP. Fur-
thermore, compared with the ARSL [29], which also uses
FCOS [20] as the supervised baseline, our approach achieved
improvements of +2.52, +0.91, +1.39, and 0.57 mAP at
different ratios of labeled data.

Our method demonstrates significant improvements across
remote sensing datasets, particularly on the DOTA-v1.0 and
NWPU VHR-10 datasets, achieving robust performance
at various data ratios. Moreover, comparing contempo-
rary semi-supervised frameworks based on anchor-free [27],
[28], [29] and two-stage anchor-based [22], [30] detectors,
we find that semi-supervised frameworks with anchor-free
detectors achieve better performance on DOTA-v1.0 and
NWPU VHR-10.

D. Ablation Study

In this section, we conduct experiments on the DOTA-
v1.0 dataset using a 10% data protocol to validate the
effectiveness of the proposed module.

1) Effect of Each Component: To investigate the contri-
butions of the three proposed modules, we analyze their
roles in enhancing model performance. Without these mod-
ules, our approach reduces to a vanilla-dense pseudo-labeling
framework (VDPLF). The effects of multiscale joint train-
ing, density estimation, and the overall model performance
are summarized in Table III. By incorporating multiscale

Fig. 8. (Left to right) Visualizations of the features from the fused feature map
P()X using the three different fusion methods, as illustrated in Fig. 5(a)—(c),
respectively.

joint training, the mAP improved from 82.31 to 8291,
demonstrating its effectiveness. While the density estimation
module did not directly deliver a significant performance
boost, this outcome aligns with its intended role: predict-
ing instance density without altering the model’s allocation
strategy. This module primarily supports the pseudo-label
generation phase by providing a basis for secondary min-
ing. To ensure its contribution remains balanced, a weight
is assigned to its loss term, minimizing its impact on the
overall model. Ultimately, the model achieves an mAP of
83.05, validating the effectiveness of the density estimation
module and the staged mining approach. Due to the sparse
high-IoU instances in the DOTA-v1.0 dataset, as shown
in Fig. 2(b), the number of “pending” samples that can
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Fig. 9. Comparison of pseudo-label mining strategies. The first row represents the original single-threshold pseudo-label mining strategy, while the second
row illustrates our proposed two-stage pseudo-label mining strategy. Green boxes indicate true positives, orange boxes represent false negatives, and blue boxes
denote the mined pseudo-labels. The blue text annotations show the classification score before the “/” and the improvement value after it (please zoomed-in

view to better view the annotations in each image).

be effectively recovered through staged pseudo-label mining
has decreased, resulting in relatively small performance
improvements from staged mining. Although the performance
gain (from 82.95 to 83.05) appears modest, the staged mining
approach positively contributes by enhancing pseudo-label
reliability, leading to a more stable and consistent training
process.

2) Influence of Feature Fusion Approaches: In generating
hybrid-scale feature maps, we evaluated the impact of three
fusion methods. For this analysis, we enhanced the VDPLF
by incorporating multiscale joint training and modifying the
fusion strategy for hybrid-scale feature maps. Unlike the
fusion method in MixTeacher [12], which solely integrates the
channel information, we propose two novel fusion approaches
that effectively combine spatial and channel information from
both the original scale and the downsampled scale.

As presented in Table IV, our proposed fusion methods out-
perform the approach in MixTeacher. Among them, the fusion
method depicted in Fig. 5(c) achieves the best performance
and is adopted in our model.

To further illustrate the effectiveness of our approach,
Fig. 8 visualizes the performance of the three fusion methods.
Under the 10% protocol, our proposed module demonstrates a
stronger focus on the target compared with the fusion module
used in MixTeacher [12], highlighting its superiority.

3) Selection of the Threshold for the Second Filtering Step:
In the second filtering process, the threshold o3 plays a
critical role. We evaluate the impact of o3 on experimental
performance, as summarized in Table V. When o3 is set
to 0.65, the pseudo-labels mined from the “pending” category
achieve optimal results. A lower o3 results in lower quality
pseudo-labels, which negatively impacts the model’s detection
performance. Conversely, a higher o3 reduces the number

TABLE V
ABLATION STUDIES ON SECONDARY FILTERING THRESHOLD

Setting o3 mAP
I 0.35 82.47

I 0.45 82.51
11 0.55 82.68
v 0.65 83.05
v 0.75 82.56

of mined pseudo-labels, leaving the student model with
insufficient pseudo-annotations for effective training. Thus,
o3 strikes a balance between the quality and quantity of
the label.

As illustrated in Fig. 9, our proposed two-stage pseudo-
label mining strategy effectively refines the selection of
pseudo-labels compared with the original single-threshold
approach. The first row of Fig. 9 represents the single-
threshold strategy, which may discard valuable pseudo-labels
due to the inflexibility of a fixed filtering threshold. In contrast,
the second row demonstrates our two-stage mining pro-
cess, which successfully identifies additional high-confidence
pseudo-labels (marked in blue) while maintaining overall
detection accuracy. This indicates that our approach not only
recovers beneficial pseudo-labels but also mitigates false neg-
atives, ultimately improving the detection performance of
the model.

4) Impact of Density Estimation Loss Weights: As shown in
Table VI, the model achieves its best performance when S is
set to 0.1. This indicates that the teacher model effectively
predicts label density scores, enabling the mining of high-
quality pseudo-labels without compromising the overall model
performance.
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TABLE VI

IMPACT OF THE DENSITY ESTIMATION LOSS WEIGHT ON
THE OVERALL MODEL

Setting B8 mAP

I 0.5 81.90

I 0.25 82.68

I 0.1 83.05

v 0.05 82.58
TABLE VII

COMPARISON OF THREE ARCHITECTURAL PARADIGMS
IN CURRENT SSOD

Architectural Paradigms mAP
Single-branch in Fig. 3 (a) 82.31
Dual-branch in Fig. 3 (b) 82.53
Triple-branch in Fig. 3 (c) 82.91

TABLE VIII

PERFORMANCE IMPACT OF THE COMBINED WEIGHT o« BETWEEN THE
CLASSIFICATION SCORE p AND THE DENSITY SCORE d

Weighta | 0.1 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09
mAP (%) | 82.53 | 82.61 | 82.70 | 82.83 | 83.05 | 82.90 | 82.72 | 82.41 | 82.30

5) Comparison of Three Architectural Paradigms in Cur-
rent SSOD: As shown in Fig. 3 and Table VII, we further
explore the differences among various branch structure
paradigms. Specifically, the single-branch paradigm corre-
sponds to VDPLE. For the dual-branch paradigm, to ensure
experimental rigor, we adopt the label-level consistency
used in PseCo [32], similar to the triple-branch paradigm
(i.e., RemoteDPL). The triple-branch paradigm demonstrates
significantly stronger performance under the 10% labeled data
protocol.

6) Comparison of Model Performance With a Different p
and d Weight Distributions: Table VIII shows the impact
of different weight distributions between the classification
score p and density score d while keeping o3 = 0.65 fixed.
The best performance (83.05) is achieved when p:d = 1:1,
while shifting the weights in either direction slightly reduces
accuracy. This suggests that a balanced contribution from both
scores can improve pseudo-label selection. The performance
drop is mainly due to fixed o3, as changing the weights alters
the final confidence score, affecting pseudo-label retention.
This highlights the flexibility of our framework, where both
weight adjustment and threshold tuning can control pseudo-
label quality.

V. CONCLUSION

In this article, we have presented a novel RemoteDPL
in remote sensing. Our proposed RemoteDPL addresses two
key challenges in remote sensing OD: extreme scale varia-
tions and dense object distributions. To address the problem
induced by extreme scale variations, our approach leverages
the anchor-free framework as baseline, complemented by a
fusion module that integrates multiscale spatial and channel
information. In addition, we introduce a novel density estima-
tion branch to tackle the complex dense object distributions
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in remote sensing imagery. By fusing density and classifica-
tion scores, we implement a two-stage pseudo-label mining
strategy that iteratively refines pseudo-label quality, effectively
uncovering high-value pseudo-labels even under challenging
conditions. Finally, compared with existing methods, our pro-
posed method achieves substantial improvements under limited
annotation settings, demonstrating its robustness and adapt-
ability to complex and diverse scenarios encountered in remote
sensing applications, with extensive experiments on the two
benchmark remote sensing datasets (DOTA-v1.0 and NWPU
VHR-10). As a potential future work, the proposed method can
be further extended from the following two aspects. First, the
strategies for fusing original- and downsampled-scale features
could be further improved to obtain better representations.
Second, the concept of object density modeling used in our
method can be extended to other tasks (e.g., semantic segmen-
tation and general OD), where scenes with dense annotations
and drastic variations in object scale are usually encountered.
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